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Abstract In this paper, we address the problem of scientific-social network integra-
tion to find a matching relationship between members of these networks (i.e. The
DBLP publication network and the Twitter social network). This task is a crucial step
toward building a multi environment expert finding system that has recently attracted
much attention in Information Retrieval community. In this paper, the problem of
social and scientific network integration is divided into two sub problems. The first
problem concerns finding those profiles in one network, which presumably have a
corresponding profile in the other network and the second problem concerns the
name disambiguation to find true matching profiles among some candidate profiles
for matching. Utilizing several name similarity patterns and contextual properties
of these networks, we design a focused crawler to find high probable matching
pairs, then the problem of name disambiguation is reduced to predict the label of
each candidate pair as either true or false matching. Because the labels of these
candidate pairs are not independent, state-of-the-art classification methods such as
logistic regression and decision tree, which classify each instance separately, are
unsuitable for this task. By defining matching dependency graph, we propose a joint
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label prediction model to determine the label of all candidate pairs simultaneously.
Two main types of dependencies among candidate pairs are considered for designing
the joint label prediction model which are quite intuitive and general. Using the
discriminative approaches, we utilize various feature sets to train our proposed
classifiers. An extensive set of experiments have been conducted on six test collection
collected from the DBLP and the Twitter networks to show the effectiveness of the
proposed joint label prediction model.

Keywords Social network integration ·Twitter ·DBLP ·Collective classification

1 Introduction

As the large portion of the web provides information for various kinds of real-world
objects (i.e. entities), more search engines provide object level search result. Typical
objects are products, people, papers, organizations, and the like. If these objects and
their attributes can be extracted from the web, powerful object-level search engines
can be built to more precisely meet users’ information needs. Well-known examples
of object level search engines include scientific expert search [29], book search [17]
and product search [24].

People search is one of the most interesting and challenging types of object level
search. In the information retrieval community, people search is also known as expert
search (i.e. expert finding). Expert finding addresses the problem of identifying
individuals who are knowledgeable in a given topic. State-of-the-art algorithms for
expert finding rank persons based on the content of their associated documents and
relations. Although most of the proposed algorithms for expert finding restrict their
analysis to the documents and relations exist in a single environment [2, 21, 25],
recent studies [12, 26] suggest that analysis of personal expertise should not be
necessarily undertaken only using the date of one single environment. For example,
while [2, 21, 25], simply use the information collected from the interant of an
organization to rank people, recent approaches [12, 26] also consider information
extracted from web pages (i.e. homepage) and social networks (i.e. personal weblogs)
to rank them. In fact, besides the degree of expertise, there are some other important
factors, which should be taken into account for ranking of experts. These factors
such as contextual factors [16], the availability of an expert [27] and the authority of
experts in their specialization area [9] are generally independent of the content of
the documents and can be extracted from multiple sources of information.

Recently, user generated data is growing rapidly and becoming one of the most
important sources of information on the web. This data contains a lot of information
such as opinion, experience, etc., which can be useful for expert finding. Microblogs
are one of the such valuable and reliable sources of information since they usually
contain up-to-date and relatively well-formatted data as well as meaningful relation-
ships between people. Expert’s microblogs can be used to estimate the effective
factors for ranking (e.g. temporal, geographical and contextual factors) and this
makes automatic discovery of expert’s microblogs an important step toward building
a multi environment expert finding system.

In this paper, we address the problem of scientific-social network integration
towards building such multi environment expert finding system. We propose an
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automatic method to integrate two networks of experts. One of them is an official
academic network (i.e. the DBLP1 publication database) that indexes the name of
experts and their publications, and the other one is the network (i.e. the Twitter2

social network) of expert’s microblogs.
There are some services, which can map people’s name with its social entity (e.g.

its Twitter profile) [31]. Those services are built on an assumption that full names
uniquely identify social entities, and therefore, they focus on textual name matching.
However, this assumption is not valid for many cases. In general, integration of
scientific and social networks is a challenging task because of the following reasons:

– Nicknaming: According to a recent research study [33], about 11 % of people
use nicknames in microblogs, which cannot be reached by the naive name
matching. In these cases, slightly different names in multiple networks refer to
the same person. This problem is known as the identification problem in the name
disambiguation literature [5].

– Name ambiguity: The second main challenge in social network integration is
distinguishing those entities that have very similar and sometimes exactly the
same name and yet refer to different people. This problem is known as the
disambiguation problem in name disambiguation literature [5].

– Multiple reference: Although the majority of people have only one profile in the
social and scientific networks, in some cases, more than one profile may exist for
an individual in a network.

– Local access to profiles: In many cases, it is impossible to access the whole profiles
in a network simultaneously, therefore we need a crawling method to access the
profiles in a network.

We design a focused crawler to collect high probable matching profile pairs in
scientific and social networks. Using a bootstrapping method, the crawler starts to
collect people’ profiles form common profiles of the two networks and in each step,
it collects those social profiles3 which follow (directly or indirectly) these common
profiles (i.e. seed profiles). Using several name matching patterns, each social profile
can be potentially matched to a limited number of corresponding profiles in the
scientific network. The social-scientific network integration problem is then reduced
to finding true matching pairs among the collected candidate pairs.

Using discriminative features extracted from the candidate profiles of matching,
we can utilize state-of-the-art classification methods (e.g. logistic regression, SVM,
decision tree, etc.) to classify candidate pairs and find true matching profiles in the
two networks. These methods basically assume that the label of each instance is
independent of other instances and do not use the relations between them. However,
in scientific-social integration problem, the profiles in each network are related to
each other, and the label (either true or false) of each matching candidate pair is not
independent of the label of other pairs.

1http://www.informatik.uni-trier.de/l̃ey/db/
2https://twitter.com
3In this paper, each social profile is equivalent to a Twitter user page and each scientific profile is
equivalent to a DBLP user page.

http://www.informatik.uni-trier.de/~ley/db/
https://twitter.com
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We consider two main types of dependencies between candidate pairs:

– Common friend dependency: People are related to each other in scientific and
social networks. An individual can have co-author relationship with other people
in a scientific network and also be a friend of others in social networks. In
many cases, scientific collaborators are also social friends. So, if for a matching
candidate pair, a common friend exists in both networks, it will be more likely to
be a true match, but finding a common friend in both networks is not possible
until we resolve all matching pairs. It means that we should jointly predict the
label of all candidate pairs.

– One-to-One matching dependency: Scientific networks (e.g. digital libraries) use
sophisticated algorithms [5, 13] and manual effort [20] to identify and disam-
biguate people with similar names. So, if one specific social profile is a candidate
for matching with two or more scientific profiles, it is less likely to be a true
match for more than one of them. On the other hand, the majority of people
have at most one profile in a social network. Therefore, if a scientific profile is
already determined as a true match for a specific social profile, the probability of
matching other social profiles (for the same scientific profile) should be reduced.

To utilize the above-mentioned dependencies in network integration problem, we
transform the initial view of each network as well as their relationships into a new
graph structure called Matching Dependency Graph. In this graph, nodes indicate
matching candidate pairs and edges represent their label dependencies. Following
the idea of conditional random fields [19], we use a discriminative graphical model
to determine the label of all candidate pairs simultaneously in order to integrate the
scientific and social networks. To learn the parameters of the model, we optimize
the conditional likelihood of the assigned labels for all candidate pairs given several
discriminative features extracted from scientific and social profiles. Since it is impos-
sible to use exact inference algorithms for the dependent variables in the matching
dependency graph, approximate belief propagation is used to find the most probable
label assignment for all candidate pairs simultaneously.

We apply our proposed algorithm to integrate DBLP and Twitter networks. To
measure the performance of our matching algorithm, we build an automatically
generated test collection and five manually annotated topical test collections. We
conduct extensive sets of experiments to compare the performance of the proposed
collective classification model with independent classification models as well as the
algorithm proposed in [33].

The main contribution of this paper includes:

– Building a multi-environmental expert finding system to integrate the social and
scientific activities of experts.

– Proposing a relational learning method that jointly integrates profiles of the two
networks of people.

– Testing our algorithm on an automatic generated test collection. In addition, we
build five test collections to test social-scientific network integration algorithms.

2 Related work

As a retrieval task, expert finding has attracted much attention, mostly due to the
launching of the Enterprise track of TREC [3]. The previously proposed approaches
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for expert finding obtain their estimator of personal expertise by aggregating the
relevance scores of the documents related to a person [2, 21]. Most of these methods
estimate the expertise score of each person according to the relations and documents
existing in a single environment. For example, [2, 21] and [1] estimate the expertise
score of each person based on his related documents collected from the intranet
of an organization and the intranet of a university respectively. However, recently
proposed models such as [27] and [9] consider heterogeneous sources of information
to improve the quality of expert finding results. Smirnova and Balog [27] considered
geographical location of experts to rank them based on their accessibility, and Deng
et al. [9] suggested to rank each expert based on his authority in the research com-
munities. The usefulness of heterogeneous sources of information for expert finding
is also reported in [12] and [8]. Similar to the idea of heterogeneous information
sources for expert finding, our goal is to build a multi environment (i.e. social and
scientific) expert finding system.

In a similar approach to our approach, You et al. [33], proposed a method to
integrate two networks of people namely, EntityCube [10] and Twitter networks.
They addressed the problem of finding Twitter pages (i.e. social profile) of a group
of related celebrities. Entity Cube is a virtual network of celebrities in which each
node corresponds to the name of a celebrity, and each edge represents co-occurrence
of names in web pages.

You et al. [33] used several name similarity patterns to find matching Twitter
profile for each name in EntityCube. Using a couple of indicative features, they
used a discriminative approach to rank Twitter candidate profiles for each name in
EntityCube. They considered the common friend property (introduced in Section 1)
to improve the accuracy of integration. However, they used independent learning
approach to model this property. Specifically, for a candidate pair of matching
nodes in Twitter and EntityCube, as indicated in Figure 1, they used the number
of neighborhood nodes with similar names as a discriminative feature.

Some previous research [5, 30], reported significant accuracy improvement of
relational learning methods (e.g. collective learning) in comparison with indepen-
dent learning methods in interdependent decision making problems. Our proposed
algorithm of matching, models the common friend property using relational learning
method. The main benefit of our proposed relational learning model is its flexibility
that can help us to consider various types of dependencies between candidate
matching profiles (e.g. one-to-one matching property).

Figure 1 Modeling the
common friend property
in [33]
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Record deduplication (also known as entity matching [18]) is a related
research problem which concerns recognizing and discriminating ambiguous
records/references in a database referring to a same underlying entity. These am-
biguous references occur in databases due to the lack of unique identifier attributes.
People name disambiguation is an important and well investigated type of such prob-
lems. Similar to this problem, our proposed algorithm can find matching profiles in
social-scientific networks despite the lack of unique identifier attributes. Previously
proposed methods for name disambiguation is generally based on learning a pair wise
similarity function for ambiguous name/references. A couple of supervised [14, 23]
and unsupervised [5, 15] methods are used to learn such similarity functions while
each method uses a different set of textual and relational (i.e. co-occurrence based)
features. For example, [5] and [6], used several features to measure co-occurrence
and textual similarity of two ambiguous names/references respectively. Pursuing the
same goal, specific properties of our problem impose some constraints on refer-
ence/name disambiguation, which is not considered in previous proposed methods
for name disambiguation. Specifically, one to one matching property (introduced in
Section 1) is a natural constraint in our problem, which is not considered in previous
research.

Another related line of research is the problem of finding related web pages for a
given query. It has attracted increasing attention within the IR research community
since its first run as part of TREC-10 Web track. Craswell et al. [7] suggest the
importance of anchor text in comparison with full-text search and Xi et al. [32]
indicate the importance of query independent features in the homepage finding
task. Recently, Fang et al. [11] proposed a discriminative graphical model to find
the homepage of faculty members. Even though this problem is closely related
to ours, homepage finding is more general in scope and does not consider the
name disambiguation problem directly. Bekkerman and McCallum [4] proposed a
more related task in which the aim is categorizing the web pages related to a set
of ambiguous names. However, in their work, each person can have an arbitrary
number of related webpages that contradicts the assumption of one-to-one matching
in the network integration problem.

3 Integration of social-scientific networks

The goal of social-scientific network integration is to find a matching relationship
between members of these networks. Membership of people in these networks
happens for different reasons and usages. So, for a large number of members of
a network, the corresponding profile may not exist in the other network. In other
words, the matching relation between members of these two networks is neither
surjective nor injective. On the other hand, due to name ambiguities, for people
who have profiles in both networks, finding matching profiles is not a trivial task.
The problem of social and scientific network integration can be divided into two
sub problems. The first problem concerns finding those profiles in one network,
which presumably have a corresponding profile in the other network and the second
problem concerns the name disambiguation to find true matching profiles among
some candidate profiles for matching. We refer to the first problem as the selection
problem and the second as the matching problem.
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Table 1 Twitter and DBLP
common events

Topic of event DBLP event Twitter event

Information retrieval SIGIR 2011 @sigir2011
ECIR 2011 @ecir2011
WSDM 2011 @wsdm2011

Programming languages PLDI @pldi
OOPSLA 2009 @oopsla2009

Computer graphics SIGGRAPH @siggraph_ic
Operating systems SOSP 2009 @sosp09
Databases SIGMOD 2010 @sigmod2010

SIGMOD 2011 @sigmod2011
Data mining IJCAI 2011 @ijcai11

KDD 2011 @kdd2011
HCI CHI 2011 @chi2011

UIST 2011 @uist2011

3.1 Selection problem

A simple solution to the selection problem is to search the social (or scientific) net-
work with the name of all people in the other network and collect retrieved profiles
as selected profiles for matching. However, this method has two main drawbacks.
Firstly, in general, it is impossible to access the whole list of names in the social (or
scientific) network. Secondly, this method only relies on exact name matching, and
therefore, it is not able to collect profiles with slightly different names, that refer to
the same person. To overcome these problems, we use a focused crawler to collect
those social profiles that presumably have a corresponding scientific profile.

To find the social profiles appropriate for matching, we try to find the profiles of
those people who have common scientific interests. There are some profiles in social
networks, which correspond to scientific events (e.g. workshops, conferences, etc.).
People with common interests are members of these events and share their news and
opinions about them. Those individuals who follow these social events (directly or
indirectly) are more likely to have a corresponding profile in the scientific network.
Table 1 shows example mappings of social and scientific events in DBLP and Twitter
networks.

We use a focused crawler to collect the social profile of those people who follow
these events directly or indirectly. It starts crawling from people who directly follow
event profiles (i.e. seed profiles) and uses follow4 relation between people to find new
profiles. For each collected profile, it uses some name similarity patterns to find the
candidate scientific profiles for matching. If it cannot find any candidate for a given
social profile, it will continue crawling from other paths. As indicated in Algorithm 1,
the crawler continues until a maximum number of candidate pairs is collected. Using
name matching patterns introduced in [33], we use exact, pref ix and all patterns to
find candidate pairs. Table 2, indicates these patterns for a person name with three
name parts (in this table each NP represents a name part).

4follow relationship is a directed relationship between profiles of the Twitter, but for generality and
simplicity, we ignore its direction.
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Table 2 Name matching
patterns

This example indicates three
types of pattern (i.e. exact
match, prefix match and all
match) for searching a
three-part name. Name = NP1
NP2 Np3

Pattern name Regular expression of matching pattern

Exact match ˆNP1 NP2 NP3$
Prefix match ˆNP1(\w)+\sNP2(\w)+\sNP3(\w)+$

ˆNP1(\w)+\sNP2(\w)+\sNP3(\w)+$
ˆNP1(\w)+\sNP3(\w)+\sNP2(\w)+$
ˆNP2(\w)+\sNP1(\w)+\sNP3(\w)+$

All match . . .

ˆNP3(\w)+\sNP2(\w)+\sNP1(\w)+$

3.2 Matching problem

In previous section, we explained how to collect social and scientific profiles for
matching. The output from the selection phase is a set of social and scientific candi-
date pairs, which match to each other according to a name similarity pattern. Due to
name ambiguity, a large portion of collected candidate pairs is not actual matching
pairs. For the matching sub-problem, the goal is to find true matching pairs from
the set of collected candidate pairs. Let VD = {d1, d2, ..., dn} , VS = {s1, s2, ..., sn} and
CDS = {(di, s j)|di ∈ VD, s j ∈ VS} be the set of scientific profiles, social profiles and
candidate pairs collected during the selection phase correspondingly. The matching
problem can be reduced to labeling each member of CDS as a true or false matching
pair.
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Note that the prior probability of the candidate pair (di, s j) for being a true
pair of matching, is inversely related to the distance of s j from its seed profile. As
mentioned before, the main criteria for selecting the pair (di, s j) as a candidate pair
is the existence of 1) a path between s j and its parent seed profile and 2) a name
similarity pattern between di and s j. Considering these criteria, we expect a fairly
high prior probability for the true labels. However, there are two important cases that
cause false matching pairs. Firstly, follow-relationship between social profiles does
not necessarily indicate a scientific relation. Hence, it is very probable that a social
profile candidate for matching may have some friends who have not a corresponding
scientific profile and vice versa. In these cases, the candidate social profile is not
an appropriate profile for matching. Intuitively, the more distant the social profile
from its seed, the less probability of being a valid selection. Secondly, the selected
social profile may be an appropriate one for matching, while because of the name
ambiguity, the selected pair is not a valid matching.

Using discriminative features associated with each candidate pair, we can utilize
the well-known classification methods (e.g. logistic regression, SVM, decision tree,
etc.) to classify each candidate pair. These methods independently predict the label
(either true or false) of each candidate pair (i.e. independent prediction). In the next
section, we introduce logistic regression as a representative method of independent
classification algorithms.

3.3 Independent label prediction using logistic regression

Logistic regression is a widely used classification algorithm which predicts the label of
each instance independent of other instances. For scientific-social networks integra-
tion, a logistic regression classifier can be used to predict the label of each candidate
pair. We can use several indicative features associated with each candidate pair to
train the classifier utilizing a set of training instances TrainSet = {(x1; t1)...(xn; tn)}
where xi is the feature vector associated with the candidate pair i, ti ∈ {true, f alse}
is its corresponding label and n is the number of training instances. While each
candidate pair i is associated with a social profile s ∈ VS and a scientific profile d ∈
VD, the classifier determines if the profile d is a match for s. We use the parametric
form of logistic regression to predict the label of each candidate pair p(ti|xi):

p(ti = 1|xi) = 1
1 + exp (θxi)

(1)

p(ti = 0|xi) = exp (θxi)

1 + exp (θxi)
(2)

Where vector xi is the feature vector of the candidate pair i and vector θ represents
the corresponding weights for each feature. Training in this model is to find the
vector θ that maximizes the conditional log likelihood of the training data:

logL(θ | X, T) =
n∑

i=1

log P(ti|xi; θ) (3)

In this equation, T = {t1, t2, ..., tn} and X = {x1, x2, ..., xn} represent the set of labels
and the set of feature vectors for each candidate pair in the training set respectively.
The above likelihood function is convex and has a unique global maximum which
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can be found numerically [28]. After learning the parameter θ , we can use (1) and
(2) to predict the most probable label for a given test instance (i.e. a candidate pair
for matching).

3.4 Candidate pairs label dependence

Logistic regression model is one of the most effective techniques for binary clas-
sification. However, it makes its decisions only based on the features of individual
candidate pairs and do not utilize the dependencies between them. In social-scientific
network integration, the label of each candidate pair is not independent of other
pairs. We consider two cases of dependencies between candidate pairs.

First of all, in many cases, scientific collaborators are also social friends. So, if a
common friend (in both social and scientific networks) exists for a candidate pair
(di, s j) ∈ CDS, the probability of classifying this pair as a true matching pair should
be increased, but finding a common friend is impossible until we resolve all matching
pairs. It means that we should jointly decide the labels of two pairs (di, s j) and (dk, sl),
if di and d j are scientific collaborators and s j and sl are social friends. We refer to this
type of dependency between candidate pairs as dependency type 1.

Secondly, since scientific networks (e.g. digital libraries) use sophisticated algo-
rithms and manual effort to disambiguate people names, we expect that in most cases
each person has at most one scientific profile. On the other hand, the majority of
people have at most one profile in a social network. These assumptions mean that
the label of two candidate pairs (di, sk) and (d j, sk) are dependent on each other.
Specifically, if di is already determined as a true match for sk, the probability of
matching (d j, sk) should be reduced.

We refer to this type of dependency between candidate pairs as dependency type 2.
Likewise, the label of two candidate pairs (dl, sm) and (dl, st) are dependent to each
other. If dl is already determined as a true match for sm, the probability of matching
(dl, st) should be reduced. We refer to this type of dependency between candidate
pairs as dependency type 3.

Figure 2 illustrates a real example of the type 1 dependency. In this figure, three
candidate pairs have been shown. White and gray nodes indicate social and scientific
profiles respectively, and the label of each node indicates the key attribute of the
profile (e.g. username for Twitter network and URL key for DBLP network). As
indicated in this figure, Marshini Chetty’s candidate social profile is followed by
Andrea Grimes Parker’s one and also their candidate scientific profiles are related
to each other by co-author relationship. Intuitively, this dependency can increase the
matching probability for both candidate pairs. The mentioned dependency also exists
between Desney S. Tan’s and Andrea Grimes Parker’s candidate profiles.

Figure 3 illustrates an example of the type 2 dependency. Four candidate pairs are
illustrated, which are dependent on each other by type 2 dependency (e.g. a single
social profile is simultaneously the candidate for four scientific profiles). If a classifier
independently predicts the label of each candidate pair, it will assign all of them the
same label because the social and scientific names are very similar in this case (Social
name of @nlpnoah is Noah Smith and scientific candidate names are Noah W. Smith,
Noah A. Smith, Noah H. Smith and Noah Torp-Smith). However, if we jointly predict
the labels of these candidate-pairs, the set of labels will most probably contain at most
one pair with true label.
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Figure 2 Type 1 dependency
between candidate pairs.
White and gray nodes indicate
social and scientific profiles
respectively. The labels of the
nodes are Twitter UserName
and DBLP unique URL key.
Co-author and follow
relationships are indicated by
dash and candidate pairs are
indicated by solid lines

Figure 3 Type 2 dependency
between candidate pairs.
White and gray nodes indicate
social and scientific profiles
respectively. The labels of the
nodes are Twitter UserName
and DBLP unique URL key

Figure 4 Type 3 dependency between candidate pairs. White and gray nodes indicate social and
scientific profiles respectively. The labels of the nodes are Twitter UserName and DBLP unique
URL key

Figure 4 illustrates an example of the type 3 dependency. In this figure, the labels
of two candidate pairs are dependent on each other because a single scientific profile
is simultaneously the candidate for matching with two social profiles. In this example,
social names are exactly the same (e.g. Jonathan Bowen) and both social profiles have
the same chance to match with Jonathan P. Bowen’s scientific profile. However, if we
jointly predict the label of candidate pairs, at most one of them will be selected as the
true matching pair.
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3.5 Matching dependency graph

In the previous section, we mentioned some examples that indicate the dependencies
among candidate pairs. These dependencies are quite intuitive and could help us to
make a joint prediction. In this section, we introduce a graph representation which
captures and models these dependencies. We refer to this graph as the matching
dependency graph (i.e. MDG).

As explained before, each instance of the matching problem can be formulated
by the following set of profiles and relationships: VD = {d1, d2, ..., dk} and VS =
{s1, s2, ..., sm} are the set of scientific and social profiles. Within each network,
there exist relationships that indicate social friendship among members of VS and
co-author relationship among members of VD. ED = {(di, d j)|di, d j ∈ VD ∧ Co −
author(di, d j)} indicates the co-authorship relation between scientific profiles and
ES = {(sl, sn)|sl, sn ∈ VS ∧ Follow(sl, sn)} indicates the social friendship between
social profiles. During selection phase, the focused crawler finds for each social
profile some few matching candidates in the scientific network. We can indicate the
candidate pairs by:

CSD = {(si, d j)|si ∈ VS ∧ d j ∈ VD ∧ CandidMatch(si, d j)}
Figure 5 illustrates an instance of matching problem (i.e. output of focused

crawler). In this figure, the nodes in VD and the edges in ED are indicated by red
color while the nodes in VS and the edges in ES are indicated by blue color. Each
candidate pair is also represented by a black edge. As mentioned before, in the
matching problem we should decide the label of each candidate pair as either a true
or a false matching pair.

We formally define matching dependency graph MDG(VMDG, EMDG) as follows.
Each node in MDG corresponds to exactly one candidate pair in CSD as defined by:

VMDG = {(si, d j)|si ∈ VS, d j ∈ VD, (si, d j) ∈ CSD}
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Figure 5 A sample of matching problem instance VS and ES are indicated in blue, VD and ED are
indicated in red and CSD are indicated in black
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According to those three types of dependencies introduced in Section 3.4, we define
three types of edges in MDG graph as

EMDG = E1 ∪ E2 ∪ E3

The edges in E1 capture the type 1 dependency between nodes in VMDG and can
be defined as

E1 = {((si, d j), (sm, dn))|si, sm ∈ VS ∧ d j, dn ∈ VD ∧ (si, sm) ∈ ES ∧ (d j, dn) ∈ ED}

The type 2 dependency between nodes of VMDG is indicated using the edges in E2

and it can be defined as

E2 = {((si, d j), (sm, dn))|si, sm ∈ VS ∧ d j, dn ∈ VD ∧ si = sm ∧ d j �= dn}
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Figure 6 Corresponding MDG graph of Figure 5 E1, E2 and E3 are black, blue and red respectively
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The edges in E3 represent the type 3 dependency between nodes of VMDG and can
be defined as

E3 = {((si, d j), (sm, dn))|si, sm ∈ VS ∧ d j, dn ∈ VD ∧ si �= sm ∧ d j = dn}
Figure 6 illustrates corresponding MDG graph of Figure 5. In this figure each

node represents a candidate pair and edges indicate different types of dependencies
between them. Dependencies of type 1, type 2 and type 3 are indicated by black, blue
and red edges respectively. In next section, we introduce a joint prediction model for
labeling the MDG’s nodes.

3.6 Joint label prediction using conditional random field

Given the MDG graph defined above, the matching problem can be reduced to
jointly predict the label (either true or false) of all candidate pairs (i.e all nodes
in MDG) simultaneity. The label of each node in MDG graph indicates if its
corresponding profiles (refer to the definition of VMDG in Section 3.5) are true
matches of each other and each edge in MDG graph indicates the label dependency
between two candidate pairs (i.e. two neighbor node). As descried in Section 3.3, the
label of each candidate pair (i.e the label ti of each node vi in MDG) is dependent on
the observed feature vector (xi) of its corresponding profiles. On the other hand, as
described in Section 3.5, the label of each node in MDG is dependent to the label of
its neighbor nodes. Therefore, we expect better label prediction by considering both
effects of node features and their label dependency’s simultaneity. In this section,
we propose a joint label prediction method that captures both mentioned effect
simultaneity.

Relational classification is a natural solution for our joint label prediction prob-
lem. By definition [28], relational data has two characteristics: first, statistical depen-
dencies exist between the entities, and second; each entity has a rich set of features
that can aid classification. The main idea of relational classification is to represent
the distribution of target random variables (i.e. the label of each node in MDG) by a
product of local functions (i.e. potential function) that each depends on only a small
number of variables.

Considering two main effective factors on label prediction in MDG graph (i.e.
node feature set and label dependency among neighbor nodes), following the idea of
conditional random field [19], we can define two types of potential function in our
model namely, node potential function and edge potential function. Node potential
function is responsible to capture the dependency of the label ti on the observed
feature xi for each node vi of MDG and edge potential is responsible to model the
label dependency among neighbor nodes in MDG graph.

According to the definition of Conditional Random Field [19], we can estimate
the joint conditional probability of a particular label assignment T given observed
feature X as a normalized product of the following set of non-negative potential
functions.

P(T|X) = 1
Z

n∏

i=1

�1(ti, xi)
∏

elm∈E1

�2(tl, tm)
∏

ekn∈E2

�3(tk, tn)
∏

e jh∈E3

�4(t j, th) (4)

In this equation, T = {t1, t2, ..., tn} is the set of assigned labels for all nodes of MDG
where n is the number of nodes and ti ∈ {true, f alse} is the random variable indicating
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the assigned label for node vi. X = {x1, x2, ..., xn} is the set of observed feature
vectors, where xi is the feature vector associated with node vi and eij indicates the
edge connecting two nodes vi and v j. Z is a normalizing factor that guarantees
P(T|X) is a valid distribution.

In (4), the node potential function (i.e. �1) gives a non-negative weight to each
possible outcome of the random variable ti (i.e. true or false) according to the
observed feature vector xi. Corresponding to three different types of dependencies
among neighbor nodes in MDG, we define three edge potential functions in (4)
where �2, �3 and �4 capture type 1, type 2 and type 3 label dependency respectively.
The edge potential functions, defined on the edge eij connecting node vi and v j, give
a non-negative weight to all four combinations that labels of vi and v j can take. (i.e.
(ti,t j)=(false,false), (false,true),(true,false) or (true,true)).

Each type of edge potential functions defined above, assigns different weights for
these combinations. For example, as discussed in Section 3.6, two neighbor nodes
vi and v j which are connected by a type1 edge are more likely to have the same
label, so we expect that �2 gives higher weight/potential to the configurations in
which ti and t j take the same label (especially for (true, true) combination). In
contrast, one-to-one matching dependency discussed in Section 3.6, suggests that two
neighbor nodes vi and v j that are connected by a type2 or type3 edge are more likely
to have different labels. In other words, we expect that at most one of them take
the true label. Therefore, we expect that �3 and �4 give lower weight/potential to
the configurations in which ti and t j take the same label (especially for (true, true)
combination).

Basically, each potential function can be an arbitrary non-negative function, but
according to [28], the most widely-used type of potential functions are log-linear
functions. Log-linear potential functions can be defined as the weighted combination
of the observed feature variables. This type of potential function is appealing since it
is jointly convex in the parameters of the model. Using log-linear potential functions,
we can re-write conditional probability of the label set T given the observed feature
variable X as follows:

P(T|X) = 1
Z ′ exp

{ n∑

i=1

ψ1(xi, ti) +
∑

elm∈E1

ψ2(tl, tm)

+
∑

ekn∈E2

ψ3(tk, tn) +
∑

e jh∈E3

ψ4(t j, th)

}

In this equation where the parameters are similar to (4), the exponential function
guarantees that P(T|X) yields a positive value, and Z ′ is the normalization constant
which guarantees that P(T|X) sums to 1 defined as:

Z ′ =
∑

t′1∈{true,false}...t′n∈{true,false}

(
exp

{ n∑

i=1

ψ1(xi, t′i) +
∑

elm∈E1

ψ2(t′l, t′m)

+
∑

ekn∈E2

ψ3(t′k, t′n) +
∑

e jh∈E3

ψ4(t′j, t′h)
})
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Using log-linear potential functions [28], each potential function ψ1, ψ2, ψ3, ψ4 is
represented by weighted combinations of feature vectors in the following form:

ψ1(xi, ti) =
M1∑

m=1

θm fm(xi, ti)

ψ2(ti, t j) =
M2∑

m=1

αmgm(ti, t j)

ψ3(ti, t j) =
M3∑

m=1

βmhm(ti, t j)

ψ4(ti, t j) =
M4∑

m=1

ζmsm(ti, t j)

Where θ , α, β and ζ represent trainable weight vectors, f , g, h and s represent
features vectors and M1, M2, M3 and M4 represent the number of features for each
potential function.

Similar to the logistic regression label prediction method introduced in Section 5.3,
we use an extensive set of features to train ψ1 potential function and for edge
potential functions (i.e. ψ2, ψ3 and ψ4), we define a set of binary/indicative features
that captures the compatibility of labels among two neighbor nodes. Binary features
associated with ψ2 are defined as follows:

g1(ti, t j) = ¬ti ∧ ¬t j

g2(ti, t j) = ¬ti ∧ t j ∨ ¬t j ∧ ti

g3(ti, t j) = ti ∧ t j

For each combination of labels assigned to two neighbor nodes ti and t j, the value
of one of the above-mentioned features is 1 and other features will be zero. For
example, if both ti and t j take true labels, then the value of g1, g2 and g3 will be
zero, zero and one respectively. Specifically, feature g2 indicates conflicting label
assignment and g1 and g3 indicate homogenous label assignment for two neighbor
nodes ti and t j . Since MDG is an undirected graph, only three features are sufficient
to model all combinations of labels assigned to ti and t j. In other words, the value of
g2 will be 1 for conflicting combinations regardless of order of nodes. We define the
binary features of ψ3 and ψ4 analogously.

Training in the proposed model is to find vectors θ , α, β and ζ that maximize
the conditional log likelihood of the training data as defined below. In our proposed
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model, training data is an instance of MDG graph with known values of labels and
features for each node.

logL(θ, α, β, ζ | X, T) =
n∑

i=1

log P(ti|xi; θ) +
∑

elm∈E1

log P(tl, tm;α)

+
∑

ekn∈E2

log P(tk, tn;β) +
∑

e jh∈E3

log P(t j, th; ζ )

In this equation, the unknown parameters are θ , α, β and ζ while the value of each ti
and xi are given as an instance of MDG graph (e.g. training instance).

Despite there is no closed-form solution for the above maximization problem, the
above log likelihood function is convex and can be efficiently maximized by iterative
searching algorithms such as BFGS [22]. It is worth noting that if we remove all
edges of the MDG graph, the above equation will be the same as (3). In other words,
logistic regression is a special case of the aforementioned model where there is no
edge between the nodes of MDG graph.

After learning the parameters of the model using an instance of MDG graph, we
can jointly predict the label of all nodes for a given test instance of MDG graph. (i.e.
an MDG graph with unknown values of labels and known values of features for each
node.) The prediction (also known as inference [28]) in our conditional model is to
compute the posterior distribution over the label variables T given a test instance of
MDG graph with observed values of node features X, i.e., to compute the following
most probable assignment of labels:

T∗ = argmaxT P(T|X)

Exact inference can be done efficiently for a set of dependent variables with simple
graph topologies such as sequences and trees [22]. However, the proposed MDG
graph goes beyond these simple topologies, and exact inference is usually intractable
in this case. Belief propagation is an exact inference algorithm for simple topologies
such as sequences and trees, which generalizes the forward-backward algorithm [28].
Although this algorithm is neither exact nor guaranteed to converge for loopy graph
structures, it is still well-defined and relatively efficient, specifically for sparse graphs.
Therefore, we resort to approximate loopy belief propagation [28] to find the most
probable assignment of labels for a given MDG test. As indicated in Figure 6, the
MDG graphs resulting from the three cases of dependencies are usually not densely
connected in real cases. So, the inference task can be done efficiently by belief
propagation for the proposed graphical model.

4 Experiments

4.1 Data

We test our proposed models on six test collections collected from the Twitter social
network and the DBLP scientific network. To build these test collections, we use the
crawler (described in Section 3.1) to collect Twitter profiles and their corresponding
candidate DBLP profiles. General statistics of the crawled profiles are reported
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Table 3 General statistics of the crawled profiles form Twitter and DBLP

Number of crawled Twitter profiles 61863
Number of crawled DBLP Profiles 136596
Average number of candidate DBLP profiles for each Twitter profile 3.65
Average number of candidate Twitter profiles for each DBLP profile 1.65

in Table 3. According to this table, for each Twitter profile there are on average
3.65 candidate DBLP profiles and for each DBLP profile there are on average 1.65
candidate Twitter profiles for matching. We build one automatically generated and
five manually annotated test collections from these collected candidate pairs.

We automatically generate a test collection, which is called URL test collection
in our experiments. Twitter and DBLP profiles have an optional field that can be
filled with the homepage URL address of the profile owner. 56.97 % of all the
collected Twitter profiles and 1.8 % of all the collected DBLP profiles have a valid
URL address, which can be used as a unique identifier of the profile owner. We
used a simple string matching method to find Twitter and DBLP profile pairs with
exactly the same URL address. We found 173 Twitter profiles, which have a unique
corresponding DBLP profile with the same URL address and used these pairs as
positive instances. For this set of automatically matched Twitter and DBLP profiles,
we used all other candidates found by the crawler as the negative instances. The set of
negative instances includes non-matching DBLP and non-matching Twitter profiles.

Apart from the automatically generated test collection, we also build five other
manually annotated test collections to evaluate the proposed matching algorithms.
As mentioned in Section 3.1, we used several seed profiles to collect profiles form
the Twitter social network. Each of these seed profiles (refer to Table 1) is related to
a well-known computer science event such as a conference, workshop or journal.
We can topically categorize the set of collected Twitter profiles according to the
topic of their seed parent. Selected seed profiles cover a broad range of topics in
computer science research community. In order to categorize seed profiles according
to their topics, we used the WikiCFP topical tags related to each of these seed
profiles.5 In our experiments, the total number of seed profile is 152, and we extract
67 related tags from WikiCFP, while each seed profile is associated with 1.66 tags on
average. Table 4 illustrates a few examples of seed profiles and their associated tags.
While some of the extracted tags are very specific (e.g. object-oriented programming,
virtual reality, etc.), some others cover broader topics in computer science (e.g.
software engineering, semantic web, etc.). After removing tags with less than two
occurrences, we categorized the remaining tags into five main topics in computer
science. The main topics and the number of associated seeds and tags are illustrated
in Table 5.6

Table 6 illustrates the number of the collected Twitter profiles for each main topic.
In this table, the number of the collected Twitter profiles is separated by the distance
of the Twitter profile from its parent seed. This table also illustrates the fraction of
ambiguous Twitter profiles (i.e. profiles with more than one candidate DBLP profile)

5WikiCFP is a forum for researchers to share news about call for papers. http://www.wikicfp.com.
6Due to several common tags in the Information Retrieval and Data Mining topics; we combine them
in a single topic as DM-IR topic.

http://www.wikicfp.com
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Table 4 Examples of seed profiles and their associated tags extracted from the WikiCFP

Seed profile WikiCFP tag Seed profile WikiCFP tag

@aamas2012 Agents @KDD2011 Data mining
@clef2011 Information retrieval @acmchi2012 HCI
@sosp2011 Operating systems @PLDI Programming language

Table 5 Five main topics related to the seed profiles

Topical collection DB DM-IR HCI OS SF

# associated tags 2 27 2 7 8
# associated seeds 3 116 11 10 12

DB = Database, DM-IR = Data mining and Information Retrieval, HCI = Human Computer
Interaction, OS = Operating Systems, SF = Software

Table 6 Number of collected Twitter profiles and fraction of ambiguous profiles for each main topic
separated by distance form parent seed

Collection # of collected Twitter profiles Fraction of ambiguous profiles

Distance 1 Distance 2 Distance 3 Distance 1 Distance 2 Distance 3

DB 222 2011 8592 0.26 0.37 0.54
DM_IR 2034 8362 23453 0.40 0.44 0.55
HCI 589 4495 19340 0.33 0.44 0.55
OS 217 1781 12067 0.39 0.44 0.55
SF 443 3116 18667 0.33 0.46 0.55

Profiles of a topic may have overlap with profiles of other topics

Table 7 Detailed statistics of the test collections

Statistics/Dataset DB DM-IR HCI OS SF URL

Number of candidate pairs collected by crawler 540 873 617 800 732 619
Number of Twitter having no DBLP 145 305 197 256 264 35
Number of edges of type1 in MDG 28 8 27 9 38 31
Number of edges of type2 in MDG 383 807 433 656 597 290
Number of edges of type3 in MDG 132 515 201 308 353 205

URL is the automatically generated test collection and other test collections are named by the
abbreviations introduced in the Table 5

separated by distance from the seed parent. As mentioned before, the fraction of the
ambiguous Twitter profiles grows with the distance from the parent seed.

400 Twitter profiles are randomly chosen for each main topic to build the topical
test collections. For these randomly selected Twitter profiles and their corresponding
DBLP candidate profiles, which are collected by the crawler, two human assessors
are asked to determine the label of each candidate pair. They used several external
evidence to determine the label of each candidate pair. For example, they used the
information on the web (e.g. homepage) as well as other social-networking websites
(e.g. the Facebook social network, the LinkedIn professional network) to decide the
label of each pair. In some cases, they also decided the label of candidate pairs based
on the topic similarity of their associated Tweets and papers. Table 7 gives detailed
statistics of the data collections.
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We can notice that the test collections have different characteristics. In particular,
the number of the Twitter profiles which do not have any DBLP matching profile
is smaller in the URL test collection in comparison with other test collections. It
comes from the method, we select the Twitter profiles for the URL test collection.
As mentioned before, we use exact URL matching to select Twitter profiles (positive
instances) for this test collection, but for other test collections, we randomly select the
Twitter profiles from the output of the focused crawler. Furthermore, there are more
edges of type two and three in the DM-IR test collection in comparison with other
test collections. This may come from the fact that in this collection, more ambiguous
names are occurred.

In our experiments, we used the negative and the positive candidate pairs of five
collections to train each proposed discriminative model and used the candidate pairs
of the remaining collection as the test set. Precision, Recall and the F-measure are
used to evaluate the proposed models, which are defined as follows:

P = Number of correctly (true) predicted matching pairs
Number of predicted matching pairs

R = Number of correctly (true) predicted matching pairs
Number of correct(true) matching pairs

F = 2PR
P + R

4.2 Experiments setup

In our experiments, we compared the matching performance of 1) a simple heuristic
method, 2) independent label predication methods, 3) proposed joint label prediction
method and 4) the method proposed in the [33].

Simple heuristic method which is called SIMPLE method in our experiments,
matches each Twitter profile to exactly one DBLP profile. For each Twitter profile,
the SIMPLE method selects the DBLP profile with most name similarity as the
true match between the set of DBLP candidate profiles found by the crawler. In
other words, the SIMPLE method assumes that each Twitter profile has exactly one
matching profile in DBLP and selects it based on the name similarity.7

To train the independent and joint classification models, we use three sets of
features as presented in Table 8. The total features are divided into five groups
based on where the feature comes from, namely, 1) Twitter homepage URL features,
2) Twitter location feature, 3) Twitter-DBLP name features, 4) Twitter Description
features and 5) Twitter-DBLP profile features. For example, the Twitter homepage
URL features include some binary and real features that indicate the properties
of the homepage URL reported by the Twitter profile owner. Specifically, feature
URL indicates whether or not the symbol tilda ĩs occurred in the homepage field
of a Twitter profile. The Twitter-DBLP name similarity features indicate the simi-
larity of names in a candidate pair, and the Twitter-DBLP profile features include

7We used the edit distance algorithm to measure the name similarity between DBLP and Twitter
names.
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Table 8 Feature group and feature sets used in discriminative learning

Category Feature name Minimal Minimal+ All Type
Description

Twitter homepage URL Homepage URL exist? � � � Binary
Homepage URL Length � � � Real
# of slashes in URL � � � Real
Homepage URL has ∼? � � � Binary

Twitter location Twitter location exist? � � � Binary
Name imilarity Distance based (2 features) � � � Real

Pattern based (8 features) � � � Binary
Overlap based (2 features) � � � Binary

Twitter description Description Exists? – � � Binary
Word (10 features) – � � Binary

Twitter-DBLP profile Distance from parent seed – – � Real
Number of papers – – � Real
Number of followers – – � Real
Number of co-authors – – � Real

crawling and profile information of candidate pairs. To examine the performance
of each feature group, we used three sets of features to train proposed discrim-
inative models. The Minimal feature set includes 1) the Twitter homepage URL,
2) the Twitter location features and 3) the Twitter-DBLP name similarity features.
Minimal+Description includes the Minimal features as well as the Twitter descrip-
tion features. The Twitter description feature set includes some binary features that
indicate the occurrence of some informative words such as “student”, “computer”,
“research”, “PhD” and so on in the description field of a Twitter profile. Finally, the
All feature set includes Minimal+Description features as well as the Twitter-DBLP
profile features. There are totally 32 features used in our experiments, and all the
feature scores are normalized by the maximum score in that feature. In addition, for
the joint prediction method, we used the binary features introduced in Section 3.6.

5 Results

An extensive set of experiments were conducted on the six test collections to address
the following questions:

– How good are the discriminative independent label prediction approaches com-
pared with the SIMPLE heuristic method? The experiments described in the
Section 5.1 are conducted on SIMPLE method as well as logistic regression
(LR), Support Vector Machine (SVM) and decision tree methods trained on the
Minimal feature set.

– Can the prediction performance be improved by considering the dependency
between the labels of the candidate pairs? Experiments in the Section 5.2 are
conducted to compare the performance of the proposed joint prediction model
with the logistic regression method (as an independent label prediction method).

– What is the impact of the different features on prediction? Experiments in the
Section 5.3 are conducted to compare the performance of the proposed joint
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prediction model, and the logistic regression method trained on different feature
sets introduced in the Table 8.

– How good is the proposed joint classification approach in comparison with the
method proposed in [33]? Experiments in the Section 5.4 are conducted to
compare the matching performance of the proposed model with the method
proposed in [33].

5.1 SIMPLE Heuristic method versus independent label prediction

In this experiment, we compare the SIMPLE heuristic method described in the
Section 4.2 with the independent label predication methods (i.e. logistic regression,
support vector machine and decision tree.) Table 9 contains the comparisons in F-
score. In these experiments, we used the Minimal feature set described in Table 8.

We can see that all the independent classification methods improve upon the
SIMPLE approach and usually LR, SVM and Decision Tree have almost the
same performance. The SIMPLE method has almost the same behavior on all test
collections except for two cases. Its F-score on the DM-IR collection is very low
and on the URL test collection is very high. It may come from the ambiguity level
of these test collections. As mentioned in Section 4.1, the DM-IR collection is the
most ambiguous and the URL collection is the least ambiguous collection among
other collections. Therefore, it seems that matching problem is easier to solve for
the URL collection in comparison with other collections. In contrast, independent
classification methods have almost the same performance on all test collections.

Figures 7 and 8 depict the precision and recall scores for SIMPLE and independent
classification methods. We can see that the SIMPLE method usually has large recall
in comparison with the independent classification methods, but it has very low
precision (except for URL test collection). The high recall property of the SIMPLE
method can be explained by the fact that people usually use very similar names
in Twitter and DBLP networks. Therefore, if multiple DBLP candidates exist for
a given Twitter profile, the most likely DBLP profile for matching will be the
one with the most similar name to that Twitter name (exactly the same heuristic
is used by the SIMPLE method). In contrast, the SIMPLE method has very low
precision, which means that it is not able to recognize non-matching pairs that have
very similar names. The independent classification methods can improve the F-
score by enhancing the precision score, but this methods decrease the recall score
substantially. It means that these methods tend to select only candidate pairs with

Table 9 SIMPLE method versus independent label prediction

Collection/Method Simple Decision tree SVM LR

DB 0.619 0.775 0.782 0.804
DM-IR 0.382 0.683 0.689 0.709
HCI 0.569 0.635 0.632 0.678
OS 0.474 0.767 0.764 0.775
SF 0.405 0.707 0.699 0.731
URL 0.794 0.802 0.789 0.785

Comparisons are based on F-measure
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Figure 7 Precision comparison of SIMPLE method and independent label prediction approaches.
Abbreviations are defined in the Table 5
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Figure 8 Recall comparison of SIMPLE method and independent label prediction approaches.
Abbreviations are defined in the Table 5

very similar names as true matches. As a result, these methods miss a lots of true
matching pairs (i.e. low recall).

5.2 Independent versus joint label prediction

In this experiment, using the Minimal feature set, we compare the matching per-
formance of the logistic regression method with the joint label prediction method
trained on the dependency type 1, type 2, type 3 and the combination of them.
Table 10 contains the comparisons in F-score. In this table, CRF-1, CRF-2 and CRF-
3 indicate the joint label prediction method for the MDG graph that has only edges
of type 1, type 2 and type 3 respectively. CRF-123 indicates the joint label prediction
method for the MDG graph with all mentioned dependency types. Table 10 shows
that the method CRF-2 substantially improves the F-score in all test collections in
comparison with the logistic regression method. Inspired from the SIMPLE method,
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Table 10 Independent versus
joint label prediction

Comparisons are based on
F-measure. The * symbol
indicates statistical significance
at 0.9 confidence interval

Collection/Method LR CRF-1 CRF-2 CRF-3 CRF-123

DB 0.804 0.842 0.846 0.817 0.861*
DM-IR 0.709 0.710 0.760 0.718 0.774*
HCI 0.678 0.692 0.732 0.682 0.736*
OS 0.775 0.763 0.783 0.752 0.797*
SF 0.731 0.739 0.793 0.751 0.812*
URL 0.785 0.796 0.871 0.785 0.891*
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Figure 9 Precision comparison of the joint and the independent label prediction methods
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Figure 10 Recall comparison of the joint and the independent label prediction methods

CRF-2 only selects the most probable DBLP candidate for each Twitter profile as
a true match, but using discriminative features it also prevents from many false
negatives. Figures 9 and 10, indicate that this method improves the recall score but
retains the precision in the same level in comparison with logistic regression. In
other words, CRF-2 brings together the advantages of the SIMPLE method (i.e.
high recall) and the logistic regression method (i.e. high precision). The average
improvement of F-score using CRF-2 is 6.8 % for all test collections in comparison
with logistic regression.
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CRF-1 and CRF-3 generally increase the F-score, but their improvement is less
than the CRF-2. CRF-3 improves the F-score 0.6 % on average and CRF-1 can
improve it up to 1.3 % on average. Specifically, CRF-1 improves the precision on
all the collections, but in two cases, slightly reduces the recall score (i.e. the DM-IR
and the OS collections). CRF-123 considers all the dependency types in the MDG
graph to predict the label of each candidate pair. In all the test collections, CRF-
123 improves the precision and recall scores in comparison with logistic regression
method, and it also has the best performance in F-score in comparison with other
methods in all collections. The improvement of F-score using CRF-123 is 8.7 %
averaged on all the test collections in comparison with logistic regression.

5.3 Impact of using different feature sets

In this experiment, we compare the matching performance of the logistic regression
method with the best joint label prediction methods (i.e. CRF-123) for different sets
of features defined in Table 8. Figure 11, indicates the precision of LR and CRF-
123 methods on the different set of features. The general trend is that the precision
can be improved for some test collections by adding the Twitter description and the
Twitter-DBLP profile features. This improvement is more obvious for the DM-IR
test collection which is the most ambiguous test collection. Another interesting trend
is that in all cases, the precision of the CRF-123 is better than its corresponding
logistic regression method (i.e. LR) in the same level of the feature set. It means
that joint prediction model never decreases the precision measure, but it can also
improve the recall measure and accordingly, the F-score.

Figure 12, indicates the recall score of the LR and CRF-123 methods on the
different set of features. The general trend is that the recall score can be improved by
adding the Twitter-DBLP profile features, but the Twitter description features may
decrease the recall score on some collections. Similar to the precision score, for all
feature sets, the recall score of CRF-123 is better than LR method.

Table 11 contains the F-score comparisons of LR and CRF-123 on the different
feature sets. According to this table, the overall performance of matching can be
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Figure 11 Precision comparison of joint and independent prediction methods for different set of
features defined in the Table 8
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Figure 12 Comparison of joint and independent prediction methods for different set of features
defined in Section 4.1- comparisons are based on recall

Table 11 Independent versus joint label prediction

Test collection LR CRF-123

Feature set MIN MIN+DESC ALL MIN MIN+DESC ALL

DB 0.804 0.795 0.833 0.861 0.863 0.863*
DM_IR 0.709 0.750 0.778 0.774 0.789 0.817*
HCI 0.678 0.727 0.775 0.736 0.782 0.794*
OS 0.775 0.747 0.771 0.797 0.823 0.825*
SF 0.731 0.728 0.838 0.812 0.826 0.851*
URL 0.785 0.800 0.841 0.891 0.888 0.887

F-scores are reported for different set of features introduced in Section 4.1. The * symbol indicates
statistical significance at 0.9 confidence interval

improved by using the complete set of features (i.e. All feature set introduced in
Table 8) for both CRF-123 and LR methods. It is worth noting that in all collections,
and for all levels of the feature sets the F-score of CRF-123 surpass its corresponding
LR in the same level of the feature set. The improvement is more salient on the
Minimal feature set, which means that the proposed joint model of label prediction
can be very useful in matching problems in which there is not enough set of features
to integrate profiles of two networks.

5.4 Comparison with previous method

In this experiment, we compare the matching performance of the CRF-1 and CRF-
123 methods with the proposed method in [33]. As mentioned in Section 2, You
et al. [33] used numerical features to model the common-friend property. In contrast,
CRF-1 and CRF-123 uses relational learning to model the dependencies between
candidate pairs. Similar to [33], CRF-1 considers common-friend dependency be-
tween candidate pairs but CRF-123 considers both common-friend dependency
and one-to-one matching dependency simultaneously. We implemented the same
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Table 12 Comparison of Joint
prediction and method
proposed in [33]

Comparisons are based on
F-scores. The * symbol
indicates statistical significance
at 0.9 confidence interval

Method SS [33] CRF-1 CRF-123

DB 0.833 0.833 0.863*
DM_IR 0.769 0.769 0.817*
HCI 0.778 0.778 0.794*
OS 0.773 0.773 0.825*
SF 0.850 0.844 0.851
URL 0.840 0.840 0.887*

feature set proposed in [33] to predict the label of the collected candidate pairs
by the crawler. Table 12 indicates that CRF-1 and SS [33] method have almost
the same performance on all data collections, but CRF-123 surpass the SS method
by a large margin. As mentioned above, SS and CRF-1 models the same property
and almost have the same result, but our proposed relational learning model is
more flexible to consider one-to-one matching dependency and it can improve the
matching performance substantially.

6 Conclusions and future work

Social and Scientific network integration is a crucial step toward building a multi
environment expert finding system. It is an important information retrieval task
because each network has its own properties and characteristics, and the integration
of them can help us to improve the quality of expert finding. This task is also
closely related to other IR problems such as named disambiguation and homepage
finding as presented in TREC Web Track. In this paper, we designed a focused
crawler to collect high probable matching profile pairs in the DBLP and the Twitter
networks. Using a bootstrapping method, the crawler starts to collect people’ profiles
form common profiles of the two networks and in each step using name similarity
patterns, it collects profile pairs with high prior probability of matching. The network
integration problem is then reduced to finding true matching pairs among these
collected candidate pairs. We noticed that two important types of dependency
exist between collected candidate pairs namely common friend dependency and
one-to-one dependency. Considering these dependencies between candidate pairs
of matching, we introduced a joint label predication method to predict the label
of candidate pairs simultaneously. We tested our algorithm on six test collections
collected from The DBLP and the Twitter networks, and our experiments indicate
that the joint label prediction method can improve the F-score of matching up to
8.7 % averaged on all the test collections. Furthermore, utilizing the different sets of
features for training, we concluded that the proposed profile matching method can
be especially useful for matching problem with few available discriminative features.
It is worth nothing that the mentioned dependencies in network integration problem
are quite general and can be utilized to integrate other social and scientific networks.
In the future, we intend to use the aligned profiles of The Twitter and The DBLP to
obtain a better relevance score estimation for each expert according to his social and
scientific interactions.
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