
Statistical Language Models for Intelligent
XML Retrieval

Djoerd Hiemstra

University of Twente, Centre for Telematics and Information Technology
P.O. Box 217, 7500 AE Enschede, The Netherlands d.hiemstra@utwente.nl

1 Introduction

The XML standards that are currently emerging have a number of character-
istics that can also be found in database management systems, like schemas
(DTDs and XML schema) and query languages (XPath en XQuery). Following
this line of reasoning, an XML database might resemble traditional database
systems. However, XML is more than a language to mark up data; it is also
a language to mark up textual documents. In this chapter we specifically ad-
dress XML databases for the storage of ‘document-centric’ XML (as opposed
to ‘data-centric’ XML [2]).

Document-centric XML is typically semi-structured, that is, it is charac-
terised by less regular structure than data-centric XML. The documents might
not strictly adhere to a DTD or schema, or possibly the DTD or schema might
not have been specified at all. Furthermore, users will in general not be inter-
ested in retrieving data from document-centric XML: They will be interested
in retrieving information from the database. That is, when searching for doc-
uments about “web information retrieval systems”, it is not essential that the
documents of interest actually contain the words “web”, “information”, “re-
trieval” and “systems” (i.e., they might be called “internet search engines”).

An intelligent XML retrieval system combines ‘traditional’ data retrieval
(as defined by the XPath and XQuery standards) with information retrieval.
Essential for information retrieval is ranking documents by their probability,
or degree, of relevance to a query. On a sufficiently large data set, a query
for “web information retrieval systems” will retrieve many thousands of doc-
uments that contain any, or all, of the words in the query. As users are in
general not willing to examine thousands of documents, it is important that
the system ranks the retrieved set of documents in such a way that the most
promising documents are ranked on top, i.e. are the first to be presented to
the user.

2 Djoerd Hiemstra

Unlike the database and XML communities, which have developed some
well-accepted standards, the information retrieval community does not have
any comparable standard query language or retrieval model. If we look at
some practical systems however, e.g. internet search engines like Google and
AltaVista, or online search services as provided by e.g. Dialog and LexisNexis,
it turns out that there is much overlap in the kind of functionality they pro-
vide.

1. IT magazines

2. +IT magazine* -MSDOS

3. "IT magazines"

4. IT NEAR magazines

5. (IT OR computer) (books OR magazines OR journals)

6. XML[0.9] IR[0.1] title:INEX site:utwente.nl

Fig. 1. Examples of complex information retrieval queries

Figure 1 gives some example queries from these systems. The first query
is a simple “query by example”: retrieve a ranked list of documents about IT
magazines. The second query shows the use of a mandatory term operator
‘+’, stating that the retrieved document must contain the word IT,1 a wild
card operator ‘*’ stating that the document might match “magazine”, but
also “magazines” or “magazined” and the ‘-’ operator stating that we do
not prefer IT magazines about MSDOS. The third and fourth query searches
for documents in which “IT” and “magazines” occur respectively adjacent or
near to each other. The fifth query shows the use of the ‘OR’ operator, stating
that the system might retrieve documents about “IT magazines”, “computer
magazines”, “IT journals”, “IT books”, etc. The sixth and last query shows
the use of structural information, very much like the kind of functionality that
is provided by XPath; so “title:INEX” means that the title of the document
should contain the word “INEX”. The last query also shows additional term
weighting, stating that the user finds “XML” much more important than “IR”.

An intelligent XML retrieval system should support XPath and all of the
examples above. For a more comprehensive overview of information retrieval
requirements, we refer to Chapter ?? [3].

This chapter shows that statistical language models provide some inter-
esting alternative ways of thinking about intelligent XML search. The rest of
the chapter is organised as follows: Section 2 introduces the language mod-
elling approach to information retrieval, and shows how language modelling
1 Note that most retrieval systems do not distinguish upper case from lower case,

and confuse the acronym “IT” with the very common word “it”.

Statistical Language Models for Intelligent XML Retrieval 3

concepts like priors, mixtures and translation models, can be used to model
intelligent retrieval from semi-structured data. Section 3 reports the experi-
mental results of a preliminary prototype system based on language models.
Finally, Section 4 concludes this paper.

2 Language modelling concepts

In this section, we introduce the language modelling approach to information
retrieval. First we describe the language modelling approach that resembles
traditional vector space information retrieval models that use so-called tf.idf
weighting. In the sections that follow, we introduce a number of more advanced
language modelling constructs like priors, mixtures and translation models,
and show how these can be used to model intelligent retrieval from semi-
structured data.

2.1 The basic model

The idea behind the language modelling approach to information retrieval
[4, 5] is to assign to each XML element X the probability P (X|q1, · · · , qn), i.e.,
the probability that the element X is relevant, given the query Q = q1, · · · , qn.
The system uses the probabilities to rank the elements by the descending order
of the probabilities. Using Bayes’ rule we can rewrite this as follows.

P (X|q1, q2, · · · , qn) =
P (q1, q2, · · · , qn|X)P (X)

P (q1, q2, · · · , qn)
(1)

Note that the denominator on the right hand side does not depend on the XML
element X. It might therefore be ignored when a ranking is needed. The prior
P (X) however, should only be ignored if we assume a uniform prior, that is,
if we assume that all elements are equally likely to be relevant in absence of
a query. Some non-content information, e.g. the number of accesses by other
users to an XML element, or e.g. the length of an XML element, might be used
to determine P (X).

Let’s turn our attention to P (q1, q2, · · · , qn|X). The use of probability the-
ory might here be justified by modelling the process of generating a query Q
given an XML element as a random process. If we assume that the current
page in this book is an XML element in the data, we might imagine picking a
word at random from the page by pointing at the page with closed eyes. Such
a process would define a probability P (q|X) for each term q, which would be
defined by the number of times a word occurs on this page, divided by the
total number of words on the page. Similar generative probabilistic models
have been used successfully in speech recognition systems [6], for which they
are called “language models”.

4 Djoerd Hiemstra

The mechanism above suggests that terms that do not occur in an XML

element are assigned zero probability. However the fact that a term is never
observed does not mean that this term is never entered in a query for which
the XML element is relevant. This problem – i.e., events which are not ob-
served in the data might still be reasonable in a new setting – is called the
sparse data problem in the world of language models [7]. In general, zero prob-
abilities should be avoided. A standard solution to the sparse data problem
is to interpolate the model P (q|X) with a background model P (q) which as-
signs a non-zero probability to each query term. If we additionally assume
that query terms are independent given X, then:

P (q1, q2, · · · , qn|X) =
n∏
i=1

(
(1−λ)P (qi) + λP (qi|X)

)
(2)

Equation 2 defines our basic language model if we assume that each term
is generated independently from previous terms given relevant XML element.
Here, λ is an unknown mixture parameter, which might be set using e.g. rel-
evance feedback of the user. The probability P (qi) is the probability of the
word qi in ‘general query English’. Ideally, we would like to train P (qi) on a
large corpus of queries. In practice however, we will use the document collec-
tion to define these probabilities as the number of times the word occurs in the
database, divided by the size of the database, measured in the total number
of word occurrences. It can be shown by some simple rewriting that Equation
2 can be implemented as a vector space weighting algorithm, where λP (qi|X)
resides on the ‘tf -position’ and 1 / (1−λ)P (qi) resides on the ’idf -position’.
The following ‘vector-space-like’ formula assigns zero weight to words not oc-
curring in a XML element, but ranks the elements in exactly the same order
as the probability measure of Equation 2 [4]:

P (q1, q2, · · · , qn|X) ∝
n∑
i=1

log
(

1 +
λP (qi|X)

(1−λ)P (qi)

)
(3)

Why would we prefer the use of language models over the use of e.g. a
vector space model with some tf.idf weighting algorithm as e.g. described
by [8]? The reason is the following: our generative query language model
gives a nice intuitive explanation of tf.idf weighting algorithms by means of
calculating the probability of picking at random, one at a time, the query
terms from an XML element. We might extend this by any other generating
process to model complex information retrieval queries in a theoretically sound
way that is not provided by a vector space approach.

For instance, we might might calculate the probability of complex pro-
cesses like the following: What is the probability of sampling eiter “Smith”
or “Jones” from the author element, and sampling “software” and “engineer-
ing” from either the body element or from the title element? Probability
theory will provide us with a sound way of coming up with these probabili-
ties, whereas a vector space approach provides us with little clues on how to

Statistical Language Models for Intelligent XML Retrieval 5

combine the scores of words on different XML elements, or how to distinguish
between “Smith” or “Jones”, and “Smit” and “Jones”.

2.2 Mixture models and augmentation weights

Equation 2 shows a model consisting of a mixture of two components: the
element component P (qi|X) and a general component P (qi). In this formula,
λ is an unknown mixture parameter. The two-component mixture effectively
models the following generation process: What is the probability of sampling
the words q1, q2, etc. at random from either the XML element X, or from
the XML database in total? We might easily extent this to mixtures with
an arbitrary number of components, for instance to model the fact that we
would prefer XML elements X whose descendent title or abstract (or both)
contain the query terms, over elements of which the descendent title or ab-
stract do not contain the query terms. A three-component mixture like this
might be described by the following generation process: What is the proba-
bility of sampling the words q1, q2, etc. from either the XML element X, or
from the descendent title element, or from the descendent abstract element?
The corresponding probability measure would be:

P (q1, q2, · · · , qn|X) =
n∏
i=1

(
αP (qi|X)+βP (qi|X, title)+γP (qi|X, abstract)

)
Instead of one unknown mixture parameter, we now have to set the value
of two unknown mixture parameters: α and β (where γ = 1 − α − β).
P (qi|X, title) would simply be defined by the number of occurrences of qi
in the descendent title of X divided by the total number of words in the
descendent title of X, and P (qi|X, title) would be defined similarly for the
descendent abstract.

In other words, the mixture expresses something similar to the logical OR:
if a word q should match either XML element X or a related XML element Y ,
then the probability is calculated by a mixture. Note that we cannot simply
add the probabilities without the mixture parameters, because the two events
are not disjoint, that is, a word might match both X and Y .

The unknown mixture parameters play a role that is similar to the aug-
mentation weights described in Chapter ?? and ?? of this book [9, 10]. Both
are essentially unknown parameters that determine the importance of XML

elements relatively to some related XML elements. The main difference be-
tween the augmentation weights and the mixture parameters of the language
models, is that the augmentation weights are propagated upwards from a leaf
node to its parent, whereas the language models might combine XML elements
in an ad-hoc way. Interestingly, as said above, a two-component mixture of
an element and the document root, behaves like a vector space approach with
tf.idf weights.

6 Djoerd Hiemstra

2.3 Statistical translation and the use of ontologies

Another interesting advanced language modelling construct is the combina-
tion of a language model with a statistical translation model [11, 12, 13]. Such
a combined model describes a two-stage sampling process: What is the prob-
ability of sampling at random a word q from the XML element X, from which
we in turn – given that q defines an entry in a probabilistic translation dic-
tionary – sample at random the possible translation ci? Such a model might
be applied to cross-language information retrieval. In cross-language retrieval,
the user poses a query in one language, e.g. Dutch, to search for documents
in another language, e.g. English documents. For instance, the user enters
the Dutch word “college”, which has as its possible translations “lecture”,
“course”, “reading” or “class”, each possibly with a different probability of
the Dutch word given the English word. The system now ranks the elements
using the following probability measure:

P (c1, c2, · · · , cn|X) =
n∏
i=1

∑
q

(
P (ci|q)P (q|X)

)
(4)

In this formula, q sums over all possible words, or alternatively over all words
for which P (ci|q) is non-zero. Given the example above, the sum would include
P (c|lecture)P (lecture|X), P (c|course)P (course|X), etc. Superficially, this
looks very similar to the mixture model. Like the mixtures, the translation
models also express something similar to the logical OR: if an element should
match either the word “lecture”, or the word “course”, then we can add the
probabilities weighted by the translation probabilities. Note however, that the
translation probabilities do not necessarily sum up to one, because they are
conditioned on different qs. Adding the probabilities is allowed because the
qs are disjoint, i.e. the occurrence of one word can never be “lecture” and
“course”. This is like adding the probabilities of tossing a 5 or a 6 with a fair
die, it is impossible to throw a 5 and a 6 with only one toss, so we can add
the probabilities: 1/6 + 1/6 = 1/3.

Translation models might play a role in using ontologies for ‘semantic’
search of XML data as described in Chapter ?? by Schenkel, Theobald and
Weikum [14]. They introduce a new operator to express semantic similarity
search conditions. As in cross-language retrieval, ontology-based search will
retrieve an element that matches words that are related, according to the
ontology, to the word in the query. If we follow the approach by Schenkel et
al., the ontology might define P (ci|q) in 4 as the probability of a concept ci,
given a word q.

2.4 Element priors

Maybe the easiest language modelling concept to experiment with is the XML

element prior P (X). The prior P (X) defines the probability that the user

Statistical Language Models for Intelligent XML Retrieval 7

likes the element X if we do not have any further information (i.e., no query).
An example of the usefulness of prior knowledge is the PageRank [15] algo-
rithm that analyses the hyperlink structure of the world wide web to come
up with pages to which many documents link. Such pages might be highly
recommended by the system: If we do not have a clue what the user is looking
for, an educated guess would be to prefer a page with a high pagerank over
e.g. the personal home page of the author of this chapter. Experiments show
that document priors can provide over 100 % improvement in retrieval per-
formance for a web entry page search task [16]. The usefulness of some simple
priors for XML search in investigated in section refsec:results.

2.5 A note on global word statistics

As said above, ideally, the probability P (qi) is defined as the probability of
the word qi in ‘general query English’. In practice it is estimated on any
sufficiently large collection of documents, e.g. quite conveniently, the XML

document collection we are currently searching.
Note that this viewpoint is quite different from most other approaches to

XML retrieval. The approach presented in Chapter ?? by Grabs and Schek
[10] makes a successful effort in reconstructing the global frequencies of the
part of the database that is the scope of the query, while still keeping the size
of the database reasonably small. The language modelling approach suggests
that it is not necessary to reconstruct the total number of times a word occurs
in a certain XML element type (or to reconstruct the total number of XML ele-
ments of a certain type that contain the word, that is, the so-called ‘document
frequency’ of the word). The model suggests that P (q) is the probability of a
word in “general query English”: It is the same for all queries, whatever the
scope of the query. Furthermore, to avoid the sparse data problem, it should
be estimated on as much data as possible, and not – in case of a selective
query – on a relatively small part of the database.

Van Zwol [17] compared the effect of fixed global frequencies vs. on-the-
fly (fragmented) computation of global frequencies, and concluded that the
exact definition of global word statistics has no measurable influence on the
performance of an intelligent XML retrieval system. The advantage of fixed
global frequencies over on-the-fly computation of global frequencies is that the
former approach allows for simpler and more efficient query plans.

2.6 Discussion

This section presented some interesting new ways of thinking about intelligent
XML retrieval. Whether these approaches perform well in practice, has to be
determined by experiments on benchmark test collections as e.g. provided by
INEX. Preliminary experiments are described in the next chapter.

However, experience with language models on other tasks look promising.
Recent experiments that use translation models for cross-language retrieval

8 Djoerd Hiemstra

[12], document priors for web search [16], and mixture models for video re-
trieval [18] have shown that language models provide top performance on these
tasks. Other systems that use language models for intelligent XML retrieval
are described by Ogilvie and Callan [19], and by List and De Vries [20].

3 Preliminary evaluation on INEX

In this section we describe a preliminary prototype system for intelligent XML

retrieval, based on the language modelling approach described above. The sys-
tem is evaluated using the INEX testbed. We briefly describe the system, the
tasks and evaluation procedure, the experimental setup and research ques-
tions, and finally the experimental results.

3.1 A first prototype

The preliminary prototype should in principle support ‘all of XPath and all
of IR’. In order to support XPath, the system should contain a complete
representation of the XML data. The system should be able to reproduce any
part of the data as the result of the query. For XPath we refer to [21].

For our first prototype we implemented the XML relational storage scheme
proposed in Chapter ?? by Grust and Van Keulen [22]. They suggest to assign
two identifiers (id) to each instance node: one id is assigned in pre-order, and
the other in post-order. The pre and post order assignment of XML element
ids provides elegant support for processing XPath queries, forming an alter-
native to explicit parent-child relations which are often used to store highly
structured data in relational tables [23, 24, 25].2

Note that pre and post order assignment can be done almost trivially in
XML by keeping track of the order of respectively the opening and closing
tags. Since we are going to build a textual index for content-based retrieval,
we assign an id (or position) to each word in the XML text content as well.
The word positions are used in a term position index to evaluate phrasal
queries and proximity queries. Interestingly, if we number the XML data as a
linearised string of tokens (including the content words), we obey the pre/post
order id assignment, but we also allow the use of theory and practice of region
algebras (see Chapter ?? [26]). For a more detailed description of the storage
scheme, we refer to [27].

3.2 The INEX evaluation

INEX is the Initiative for the Evaluation of XML Retrieval. The initiative
provides a large testbed, consisting of XML documents, retrieval tasks, and
2 Actually, Grust et al. [22] store the id of the parent as well. Similarly, Schmidt et

al. [25] add a field to keep track of the order of XML elements; here we emphasise
different view points.

Statistical Language Models for Intelligent XML Retrieval 9

relevance judgements on the data. INEX identifies two tasks: the content-only
task, and the content-and-structure task.

The content-only task provides 30 queries like the following example:
//*[. =~ "computational biology"] (“XPath & IR” for: any element about
“computational biology”). In this task, the system needs to identify the most
appropriate XML element for retrieval. The task resembles users that want to
search XML data without knowing the schema or DTD.

The content-and-structure task provides 30 queries like the following:
//article[author =~ "Smith|Jones" and bdy =~ "software engineering"]

(“XPath & IR” for: retrieve articles written by either Smith or Jones about
software engineering). This task resembles users or applications that do know
the schema or DTD, and want to search some particular XML elements while
formulating restrictions on some other elements.

For each query in both tasks, quality assessments are available. XML ele-
ments are assessed based on relevance and coverage. Relevance is judged on a
four-point scale from 0 (irrelevant) to 3 (highly relevant). Coverage is judged
by the following four categories: N (no coverage), E (exact coverage), L (the
XML element is too large), and S (the XML element is too small).

In order to apply traditional evaluation metrics like precision and recall,
the values for relevance and coverage must be quantised to a single quality
value. INEX suggests the use of two quantisation functions: Strict and lib-
eral quantisation. The strict quantisation function evaluates whether a given
retrieval method is capable of retrieving highly relevant XML elements: it as-
signs 1 to elements that have a relevance value 3, and exact coverage. The
liberal quantisation function assigns 1 to elements that have a relevance value
of 2 and exact coverage, or, a relevance value of 3 and either exact, too small,
or too big coverage. An extensive overview of INEX is given in Chapter ?? of
this volume [28].

3.3 Experimental setup and research questions

We evaluate a system that only has limited functionality. First of all, we as-
sume that λ = 1 in Equation 2, so we do not have to store the global word
statistics. The system supports queries with a content restriction on only one
XML element, so the example content-and-structure query in the previous
section is not supported: Either the restriction on the author tag, or the
restriction on the bdy tag has to be dropped. The system supports conjunc-
tion and disjunction operators, which are evaluated as defined by Equation 4
where the translation probabilities were set to 1. All queries were manually
formulated from the topic statements.

The experiments are designed to answer the following research question:
Can we use the prior probability P (X) (see Equation 1) to improve the re-
trieval quality of the system? We present three experiments using the system
described in this paper, for which only the prior probabilities P (X) differ. The
baseline experiment uses a uniform prior P (X) = c, where c is some constant

10 Djoerd Hiemstra

value, so each XML element will have the same a priori probability of being
retrieved. A second experiment uses a length prior P (X) = number of tokens
in the XML element, where a token is either a word or a tag. This means that
the system will prefer bigger elements, i.e. elements higher up the XML tree,
over smaller elements. A third experiment uses a prior that is somewhere in
between the two extremes. The prior is defined by P (X) = 100 + number of
tokens in the XML element. Of course, the priors should be properly scaled,
but the exact scaling does not matter for the purpose of ranking. We hy-
pothesise that the system using the length prior will outperform the baseline
system.

3.4 Evaluation results

This section presents the evaluation results of three retrieval approaches (no
prior, ‘half’ prior, and length prior) on two query sets (content-only, and
content-and-structure), following two evaluation methods (strict and liberal).
We will report for each combination the precision at respectively 5, 10, 15,
20, 30 and 100 documents retrieved.

Strict evaluation

Table 1 shows the results of the three experiments on the content-only queries
following the strict evaluation. The precision values are averages over 22
queries. The results show an impressive improvement of the length prior on
all cut-off values. Apparently, if the elements that need to be retrieved are not
specified in the query, users prefer larger elements over smaller elements.

Table 1. Results of content-only (CO) runs with strict evaluation

precision no prior ‘half’ prior length prior

at 5 0.0455 0.0455 0.1909
at 10 0.0364 0.0455 0.1591
at 15 0.0303 0.0424 0.1394
at 20 0.0341 0.0364 0.1318
at 30 0.0364 0.0424 0.1318
at 100 0.0373 0.0559 0.1000

Table 2 shows the results of the three experiments on the content-and-
structure queries following the strict evaluation. The precision values are av-
erages over 28 queries. The baseline system performs much better on the
content-and-structure queries than on the content-only queries. Surprisingly,
the length prior again leads to substantial improvement on all cut-off values
in the ranked list.

Statistical Language Models for Intelligent XML Retrieval 11

Table 2. Results of content-and-structure (CAS) runs with strict evaluation

precision no prior ‘half’ prior length prior

at 5 0.1929 0.2357 0.2857
at 10 0.1964 0.2321 0.2857
at 15 0.1976 0.2333 0.2714
at 20 0.1929 0.2232 0.2589
at 30 0.1786 0.2060 0.2607
at 100 0.0954 0.1107 0.1471

Liberal evaluation

Table 3 shows the results of the three experiments on the content-only queries
using the liberal quantisation function defined above for evaluation. The pre-
cision values are averages over 23 queries. Again, the results show a significant
improvement of the length prior on all cut-off values.

Table 3. Results of content-only (CO) runs with liberal evaluation

precision no prior ‘half’ prior length prior

at 5 0.1130 0.1391 0.4261
at 10 0.0957 0.1304 0.3609
at 15 0.0957 0.1333 0.3304
at 20 0.1000 0.1152 0.3000
at 30 0.1087 0.1232 0.2812
at 100 0.0896 0.1222 0.2065

Table 4. Results of content-and-structure (CAS) runs with liberal evaluation

precision no prior ‘half’ prior length prior

at 5 0.2429 0.2929 0.4000
at 10 0.2286 0.2823 0.3750
at 15 0.2262 0.2881 0.3738
at 20 0.2268 0.2821 0.3607
at 30 0.2179 0.2583 0.3595
at 100 0.1279 0.1571 0.2054

Table 4 shows the results of the three experiments on the content-and-
structure queries following the liberal evaluation. The precision values are
averages over 28 queries. The length prior again shows better performance

12 Djoerd Hiemstra

on all cut-off values. Note that the content-only task and the content-and-
structure task show practically equal performance if the liberal evaluation
procedure is followed.

4 Conclusion

In this paper we described in some detail the ideas behind the language mod-
elling approach to information retrieval, and suggested several advanced lan-
guage modelling concepts to model intelligent XML retrieval. We presented
an preliminary implementation of a system that supports XPath and complex
information retrieval queries based on language models. From the experiments
we conclude that it is beneficial to assign a higher prior probability of rele-
vance to bigger fragments of XML data than to smaller XML fragments, that
is, to users, more information seems to be better information.

Whether the advanced modelling contructs presented in Section 2 will in
fact result in good retrieval performance will be evaluated in the CIRQUID

project (Complex Information Retrieval Queries in a Database). In this
project, which is run in cooperation with CWI Amsterdam, we will develop
a logical data model that allows us to define complex queries using advanced
language modelling primitives.

Acknowledgements

The research presented in this chapter was funded in part by the Netherlands
Organisation for Scientific Research (NWO project number 612.061.210).

References

1. Blanken, H., Schek, H., Weikum, G., Grabs, T., Schenkel, R., eds.: Intelligent
XML Retrieval. Lecture Notes in Computer Science (LNCS). Springer-Verlag
(2003)

2. Bourret, R.: XML and databases. Technical Report (2003)
http://www.rpbourret.com/xml/XMLAndDatabases.htm

3. Rys, M.: Full-Text Search with XQuery: A status report. In [1] (in this volume)
4. Hiemstra, D., Kraaij, W.: Twenty-One at TREC-7: Ad-hoc and cross-language

track. In: Proceedings of the seventh Text Retrieval Conference TREC-7, NIST
Special Publication 500-242 (1998) 227–238

5. Miller, D., Leek, T., Schwartz, R.: A hidden Markov model information re-
trieval system. In: Proceedings of the 22nd ACM Conference on Research and
Development in Information Retrieval (SIGIR’99) (1999) 214–221

6. Rabiner, L.: A tutorial on hidden Markov models and selected applications in
speech recognition. In Waibel, A., Lee, K., eds.: Readings in speech recognition.
Morgan Kaufmann (1990) 267–296

Statistical Language Models for Intelligent XML Retrieval 13

7. Manning, C., Schütze, H.: Foundations of Statistical Natural Language Pro-
cessing. MIT Press (1999)

8. Salton, G., Buckley, C.: Term-weighting approaches in automatic text retrieval.
Information Processing & Management 24 (1988) 513–523

9. Fuhr, N., Großjohann, K., Kriewel, S.: A query language and user interface for
XML information retrieval. In [1] (in this volume)

10. Grabs, T., Schek, H.: Flexible information retrieval on XML documents. In [1]
(in this volume)

11. Berger, A., Lafferty, J.: Information retrieval as statistical translation. In:
Proceedings of the 22nd ACM Conference on Research and Development in
Information Retrieval (SIGIR’99). (1999) 222–229

12. Hiemstra, D., Jong, F. de: Disambiguation strategies for cross-language infor-
mation retrieval. In: Proceedings of the third European Conference on Research
and Advanced Technology for Digital Libraries (ECDL). (1999) 274–293

13. Xu, J., Weischedel, R., Nguyen, C.: Evaluating a probabilistic model for cross-
lingual information retrieval. In: Proceedings of the 24th ACM Conference on
Research and Development in Information Retrieval (SIGIR’01). (2001) 105–110

14. Schenkel, R., Theobald, A., Weikum, G.: Ontology-enabled XML search. In [1]
(in this volume)

15. Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine.
Computer Networks and ISDN Systems 30 (1998) 107–117

16. Kraaij, W., Westerveld, T., Hiemstra, D.: The importance of prior probabilities
for entry page search. In: Proceedings of the 25th ACM Conference on Research
and Development in Information Retrieval (SIGIR’02). (2002) (in this volume).

17. Zwol, R. van: Modelling and searching web-based document collections. PhD
thesis, Centre for Telematics and Information Technology, University of Twente
(2002)

18. Westerveld, T., Vries, A. de, van Ballegooij, A., Jong, F. de, Hiemstra, D.: A
probabilistic multimedia retrieval model and its evaluation. Eurasip Journal on
Applied Signal Processing 2003(2) (2003) 186–198

19. Ogilvie, P., Callan, J.: Language models and structured document retrieval. In:
Proceedings of the first Annual Workshop of the Initiative for the Evaluation of
XML retrieval (INEX), ERCIM Workshop Proceedings (2003)

20. List, J., Vries, A. de: CWI at INEX 2002. In: Proceedings of the first Annual
Workshop of the Initiative for the Evaluation of XML retrieval (INEX), ERCIM
Workshop Proceedings (2003)

21. Berglund, A., Boag, S., Chamberlin, D., Fernandez, M., Kay, M., Robie, J.,
Simeon, J.: XML Path language (XPath) 2.0. Technical report, World Wide
Web Consortium (2002) http://www.w3.org/TR/xpath20/

22. Grust, T., Keulen, M. van: Tree awareness for relational DBMS kernels: Stair-
case join. In [1] (in this volume)

23. Florescu, D., Kossmann, D.: A performance evaluation of alternative mapping
schemes for storing xml data in a relational database. In: Proceedings of the
VLDB’99. (2001) 105–110

24. Keulen, M. van, Vonk, J., Vries, A. de, Flokstra, J., Blok, H.: Moa: extensibility
and efficiency in querying nested data. Technical Report 02-19, Centre for
Telematics and Information Technology (2002)

25. Schmidt, A.R., Kersten, M.L., Windhouwer, M.A., Waas, F.: Efficient Rela-
tional Storage and Retrieval of XML Documents. In: The World Wide Web and

14 Djoerd Hiemstra

Databases - Selected Papers of WebDB 2000. Volume 1997 of Lecture Notes in
Computer Science (LNCS)., Springer-Verlag (2000) 137–150

26. Vries, A. de, List, J., Blok, H.: The multi-model DBMS architecture and XML
information retrieval. In [1] (in this volume)

27. Hiemstra, D.: A database approach to content-based XML retrieval. In: Pro-
ceedings of the first Annual Workshop of the Initiative for the Evaluation of
XML retrieval (INEX), ERCIM Workshop Proceedings (2003)

28. Kazai, G., Gövert, N., Lalmas, M., Fuhr, N.: The INEX evaluation initiative.
In [1] (in this volume)

